Appendix 8.1 - Species lists of study areas

Species list for both study areas based on shorebird counts (Banc d'Arguin: 1979-2020, Bijagós Archipelago: 1987-2020) and fisheries data (Banc d'Arguin: 2006-2020, Bijagós Archipelago: 2021). The abbreviation of each species (Abb.) is given, together with the IUCN Red List status of a species (LC = Least Concern, NT = Near Threatened, VU = Vulnerable, EN = Endangered, CR = Critically Endangered) and its population change on a global level (Dec = Decrease, Inc = Increase, Sta = Stable, Unk = Unknown). The presence (Pres.) of the species in the Banc d'Arguin and the Bijagós Archipelago indicates if the species was sampled (and included; Samp.) in this study.

				IUG	CN Red List	Banc	d'Arguin	Bi	jagós
	Common name	Scientific name	Abb.	Status	Pop. change	Pres.	Samp.	Pres.	Samp.
Shorebirds	Common Sandpiper	Actitis hypoleucos	Act hyp	LC	Dec	х		х	х
	Ruddy Turnstone	Arenaria interpres	Are int	LC	Dec	х		х	х
	Stone Curlew	Burhinus oedicnemus	Bur oed	LC	Dec	х			
	Sanderling	Calidris alba	Cal alb	LC	Unk	х		х	х
	Dunlin	Calidris alpina	Cal alp	LC	Dec	х		х	
	Red Knot	Calidris canutus	Cal can	NT	Dec	х	х	х	х
	Curlew Sandpiper	Calidris ferruginea	Cal fer	NT	Dec	х	х	х	х
	Little Stint	Calidris minuta	Cal min	LC	Inc	х		х	
	Ruff	Calidris pugnax	Cal pug	LC	Dec	х			
	Kentish Plover	Charadrius alexandrinus	Cha ale	LC	Dec	х		х	
	Common Ringed Plover	Charadrius hiaticula	Cha hia	LC	Dec	х	х	х	х
	Cream-coloured Courser	Cursorius cursor	Cur cur	LC	Dec	х			
	Eurasian Oystercatcher	Haematopus ostralegus	Hae ost	NT	Dec	х	х	х	
	Bar-tailed Godwit	Limosa lapponica	Lim lap	NT	Dec	х	х	х	х
	Black-tailed Godwit	Limosa limosa	Lim lim	NT	Dec	х			
	Eurasian Curlew	Numenius arquata	Num arq	NT	Dec	х		х	
	Eurasian Whimbrel	Numenius phaeopus	Num pha	LC	Dec	х	х	х	х
	Grey Plover	Pluvialis squatarola	Plu squ	LC	Dec	х	х	х	х
	Avocet	Recurvirostra avosetta	Rec avo	LC	Unk	х			
	Spotted Redshank	Tringa erythropus	Tri ery	LC	Sta	х			
	Common Greenshank	Tringa nebularia	Tri neb	LC	Sta	х		х	х
	Marsh Sandpiper	Tringa stagnatilis	Tri sta	LC	Dec	х			
	Common Redshank	Tringa totanus	Tri tot	LC	Unk	х		х	х
Sharks	Spinner Shark	Carcharhinus brevipinna	Car bre	VU	Dec	х			
	Bull Shark	Carcharhinus leucas	Car leu	VU	Dec			х	х
	Blacktip Shark	Carcharhinus limbatus	Car lim	VU	Dec	х		х	х
	Dusky Shark	Carcharhinus obscurus	Car obs	EN	Dec	х			
	Tiger Shark	Galeocerdo cuvier	Gal cuv	NT	Dec	х		х	
	Atlantic Nurse Shark	Ginglymostoma cirratum	Gin cir	VU	Dec	х	х	х	х
	Barbeled Houndshark	Leptocharias smithii	Lep smi	VU	Dec	х	х	х	
	Common Smoothhound	Mustelus mustelus	Mus mus	EN	Dec	х			
	Lemon Shark	Negaprion brevirostris	Neg bre	VU	Dec	х			
	Atlantic Weasel Shark	Paragaleus pectoralis	Par pec	EN	Dec	х	х		
	Milk Shark	Rhizoprionodon acutus	Rhi acu	VU	Dec	х	х	х	х
	Scalloped Hammerhead	Sphyrna lewini	Sph lew	CR	Dec	х	х	х	х
	Great Hammerhead	Sphyrna mokarran	Sph mok	CR	Dec	х			
	Smooth Hammerhead	Sphyrna zygaena	Sph zyg	VU	Dec	х	х		
Rays	Duckbill Eagle Ray	Aetomylaeus bovinus	Aet bov	CR	Dec	х	х	х	
	Brown Stingray	Bathytoshia lata	Bat lat	VU	Dec	х		х	
	Marbled Stingray	Dasyatis marmorata	Das mar	NT	Dec	х	х		
	Common Stingray	Dasyatis pastinica	Das pas	VU	Dec	х			
	Daisy Whipray	Fontitrygon margarita	Fon mar	VU	Dec	х	х	х	х
	Pearl Whipray	Fontitrygon margaritella	Fon mar	NT	Dec	х	х	х	х
	Thorny Whipray	Fontitrygon ukpam	Fon ukp	CR	Dec			х	х
	Blackchin Guitarfish	Glaucostegus cemiculus	Gla cem	CR	Dec	х	х	х	х
	Spiny Butterfly Ray	Gymnura altavela	Gym alt	EN	Dec	х	х		
	Seret's Butterfly Ray	Gymnura sereti	Gym ser	EN	Dec	х		х	х
	Smalltooth Stingray	Hypanus rudis	Hyp rud	CR	Dec			х	х
	Common Eagle Ray	Myliobatis aquila	Myl aqu	CR	Dec	х			
	African Brown Skate	Raja parva	Raj par	NT	Dec	х			
	Whitespotted Guitarfish	Rhinobatos albomaculatus	Rhi alb	CR	Dec	х			
	Spineback Guitarfish	Rhinobatos irvinei	Rhi irv	CR	Dec		х		
	Common Guitarfish	Rhinobatos rhinobatos	Rhi rhi	CR	Dec	х	х	х	
	Lusitanian Cownose Ray	Rhinoptera marginata	Rhi mar	CR	Dec	х	х	х	х
	African Wedgefish	Rhynchobatus luebberti	Rhy lue	CR	Dec	х			
	Round Stingray	Taeniurops grabatus	Tae gra	NT	Dec			х	

Appendix 8.2 - Banc d'Arguin intertidal presence of mesopredators

We used tracking and fisheries data to determine the presence of shorebirds and elasmobranchs in different elevational zones in the Banc d'Arguin. We then determined the probability of presence of each species group in the subtidal, intertidal and supratidal zones using generalized additive mixed models. The observed presence (Obs.) of shorebirds was highest in the intertidal (87.3%) and supratidal zones (77.8%), which is supported by the model predictions with a mean probability (Prob.) of $76.2 \pm 3.4\%$ and $77.8 \pm 3.4\%$ (mean \pm s.e.) respectively. For sharks and rays, the highest observed presence was in the subtidal (27.8% and 38.8%, respectively) and intertidal zones (19.3% and 27.3%), which was also supported by model predictions (subtidal: $40.9 \pm 4.9\%$ and $47.0 \pm 6.0\%$, intertidal 23.9 \pm 3.7% and 34.5 \pm 5.0% for sharks and rays respectively).

	Sub	tidal	Inte	rtidal	Supr	atidal
Species Group	Obs. Prob. (%) N (%) (mean ± s.e.)		Obs. N (%)	Prob. (%) (%) (mean ± s.e.)		Prob. (%) (mean ± s.e.)
Shorebirds	428 (48.4)	11.3 ± 2.1	1,967 (87.3)	76.2 ± 3.4	3,567 (78.6)	77.8 ± 3.4
Sharks	222 (27.8)	40.9 ± 4.9	119 (19.3)	23.9 ± 3.7	-	0.4 ± 0.2
Rays	310 (38.8)	47.0 ± 6.0	168 (27.3)	34.5 ± 5.0	-	0.2 ± 0.1

Smooth terms of all three species group generalized additive mixed models were significant. Elevation explained 34.4%, 10.4%, and 10.7% of the deviance for shorebirds, sharks and rays, respectively.

Species Group	Smooth term	d.f.	X ²	p-value	Deviance explained (%)
Shorebirds	Elevation	5.97	908.17	< 0.001	34.38
Sharks	Elevation	4.88	60.01	< 0.001	10.40
Rays	Elevation	5.79	52.64	< 0.001	10.68

Appendix 8.3 - Prey group details

Overview of prey group sample sizes. Sample sizes based on sampling efforts for this study are shown with

additional stable isotope information supplemented with other published studies from the region.

Area	Species group		This study	Other studies	Total	Reference(s)
Banc d'Arguin	Bivalves	Bivalves	175	27	202	2,1
	Cephalopods	Cephalopods		58	58	2,3
	Crustaceans	Crabs	66	9	75	1
		Other crustaceans	9	5	14	1
		Shrimps	4	3	7	1
	Detritus	Detritus	3		3	
	Gastropods	Large gastropods	14	19	33	2
		Medium gastropods	13	18	31	2
		Small gastropods	1	7	8	2,1
	Polychaetes	Polychaetes (deposit)	20	7	27	2
		Polychaetes (filter)	4		4	
		Polychaetes (predatory)	10	18	28	2
	Producers	Algae	13		13	
		Microphytobenthos	7	3	10	1
		РОМ	1	6	7	1,2
		Seagrass	15		15	
	Sediment	Sediment	23		23	
	Teleosts	Benthopelagic teleosts	83	66	149	2
		Demersal teleosts	106	116	222	2
		Pelagic teleosts	21	15	36	2
	Zooplankton	Zooplankton	2	2	4	1
Bijagós	Bivalves	Bivalves	83	21	104	1
Archipelago	Cephalopods	Cephalopods		53	53	3
	Crustaceans	Crabs	113	11	124	1
		Hermit crabs	23		23	
		Mud shrimps	23	2	25	1

	Shrimps	22	3	25	1
Detritus	Detritus	30		30	
Gastropods	Small gastropods	6		6	
Polychaetes	Polychaetes	12		12	
	Polychaetes (deposit)	20	10	30	1
	Polychaetes (filter)	10		10	
	Polychaetes (predatory)	23	12	35	1
Producers	Algae	15		15	
	Mangrove	16		16	
	Microphytobenthos	21	4	25	1
	POM	4	4	8	1
Sediment	Sediment	11		11	
Teleosts	Benthopelagic teleosts	113		113	
	Demersal teleosts	103		103	
	Fish larvae and juveniles	20		20	
	Pelagic teleosts	54		54	
Zooplankton	Zooplankton	3	1	4	1

^{1.} Catry et al. (2016), ^{2.} Carlier et al. (2015) & Petersen et al. (2016), ^{3.} Merten et al. (2017).

Appendix 8.4 - Mesopredator niche characteristics

Overview of sampled (meso)predators from the Banc d'Arguin and the Bijagós Archipelago. For each species, the sample size (n), size range (total length for sharks, disc width for rays; in centimeters), Bayesian Standard Ellipse Area (SEA_b; i.e., total niche space occupied by a species), Eccentricity (E: values close to 0 indicate variation in niche space is driven by both axes/isotopes, values close to 1 indicate one axis/isotope determines variation), Theta (θ : values close to 0 indicate that variation is driven by the x-axis/13C, values close to -90/90 indicate variation is driven by the y-axis/d15N), trophic position (TP) and alpha (α : ratio between 0 and 1 indicating the relative contribution of benthic primary producers compared to pelagic producers) are given. Values in parentheses indicate the 95% credible interval of the Bayesian posterior estimates for SEA_b, TP and α .

Area	Group	Species	n	Size range (cm)	SEA _b	Е	θ	ТР	α
Banc	Sharks	Ginglymostoma cirratum	8	109-181	9.7 (5.2-25.9)	0.98	-36.01	4.3 (3.9-4.8)	0.3 (0.1-0.6)
d'Arguin		Leptocharias smithii	37	57-78	3.2 (2.3-4.4)	0.93	-61.91	4.1 (4.0-4.3)	0.1 (0.0-0.1)
		Paragaleus pectoralis	25	66-129	7.4 (4.7-10.7)	0.91	-34.14	4.3 (4.1-4.4)	0.2 (0.1-0.3)
		Rhizoprionodon acutus	30	28-107	4.9 (3.2-6.9)	0.91	-52.16	4.6 (4.5-4.7)	0.1 (0.1-0.2)
		Sphyrna lewini	13	80-126	1.6 (0.8-2.5)	0.71	67.41	5.1 (4.9-5.2)	0.0 (0.0-0.1)
		Sphyrna zygaena	28	73-160	2.9 (1.9- 4.0)	0.74	-67.80	4.3 (4.2-4.4)	0.0 (0.0-0.1)
	Rays	Aetomylaeus bovinus	24	40-135	5.8 (3.6- 8.4)	0.89	-39.37	3.6 (3.4-3.7)	0.1 (0.1-0.2)
		Dasyatis marmorata	20	26-86	8.6 (5.0-12.5)	0.44	-60.05	3.8 (3.6-4.0)	0.1 (0.0-0.2)
		Dasyatis sp.	27	38-139	8.9 (5.7-12.7)	0.93	-65.88	3.5 (3.3-3.7)	0.3 (0.2-0.4)
		Fontitrygon margarita	24	22-39	6.3 (3.9-9.3)	0.86	-34.92	3.5 (2.9-4.0)	0.2 (0.0-0.4)
		Fontitrygon margaritella	5	25-31	2.4 (1.7-12.6)	0.99	-50.75	3.4 (3.3-3.5)	0.2 (0.1-0.3)
		Glaucostegus cemiculus	47	18-60	8.6 (6.3-11.3)	0.91	-55.55	3.7 (3.6-3.9)	0.3 (0.2-0.4)
		Gymnura altavela	21	48-157	5.1 (3.1-7.5)	0.90	-46.12	4.3 (4.2-4.5)	0.1 (0.0-0.2)
		Rhinobatos irvinei	15	20-35	3.9 (2.1-6.1)	0.81	-50.94	3.6 (3.4-3.8)	0.3 (0.2-0.3)
		Rhinobatos rhinobatos	11	19-46	5.9 (3.2-11.8)	0.97	-37.57	3.8 (3.6-4.1)	0.2 (0.1-0.4)
		Rhinoptera marginata	16	60-83	3.0 (1.7-4.7)	0.91	-64.95	4.0 (3.8-4.1)	0.0 (0.0-0.1)
	Waders	Calidris canutus	181		10.1 (8.6-11.5)	0.89	4.84	3.0 (2.9-3.1)	0.0 (0.0-0.1)
		Calidris ferruginea	8		17.7 (6.5-36.8)	0.99	10.45	3.0 (2.5-3.4)	0.3 (0.0-0.8)
		Charadrius hiaticula	9		6.1 (3.6-15.0)	0.98	30.82	3.2 (2.8-3.6)	0.4 (0.1-0.7)
		Haematopus ostralegus	6		1.6 (0.5-3.2)	0.96	-14.88	3.5 (3.3-3.7)	0.1 (0.0-0.2)
		Limosa lapponica	25		32.4 (19.3-45.5)	0.70	37.90	3.4 (3.1-3.8)	0.1 (0.0-0.3)
		Numenius phaeopus	19		3.2 (1.8-4.7)	0.91	3.63	3.6 (3.4-3.7)	0.2 (0.1-0.3)
		Pluvialis squatarola	22		21.9 (13.1-31.4)	0.81	22.89	3.2 (2.9-3.5)	0.4 (0.1-0.6)
Bijagós	Sharks	Carcharhinus leucas	6	83-122	2.1 (1.0-6.4)	0.98	-43.07	3.9 (3.6-4.3)	0.7 (0.4-0.9)
Archipelago		Carcharhinus limbatus	24	62-149	1.4 (0.8-1.9)	0.66	3.17	4.5 (4.2-4.8)	0.5 (0.3-0.7)
		Ginglymostoma cirratum	5	123-190	2.2 (0.6-4.1)	0.90	9.29	4.6 (4.3-4.9)	0.6 (0.3-0.8)
		Rhizoprionodon acutus	35	40-106	1.2 (0.8-1.6)	0.75	-75.35	4.3 (4.0-4.7)	0.4 (0.2-0.6)
		Sphyrna lewini	40	44-198	2.3 (1.6-3.1)	0.93	74.58	4.5 (4.2-4.8)	0.5 (0.3-0.7)
	Rays	Fontitrygon margarita	58	12-84	5.2 (3.9- 6.6)	0.84	-42.88	3.5 (3.2-3.8)	0.7 (0.4-1.0)
		Fontitrygon margaritella	161	12-43	7.6 (6.5-8.8)	0.60	-1.54	3.7 (3.3-3.9)	0.8 (0.5-1.0)
		Fontitrygon ukpam	5	39-58	1.3 (1.9-16.1)	1.00	25.72	2.9 (2.4-3.4)	0.3 (0.1-0.7)
		Glaucostegus cemiculus	141	11-88	6.2 (5.1-7.2)	0.63	-20.99	3.9 (3.7-4.1)	0.8 (0.5-0.9)
		Gymnura sereti	23	29-74	7.2 (4.4-10.2)	0.85	13.03	3.9 (3.7-4.2)	0.7 (0.4-0.9)
		Hypanus rudis	9	55-88	10.5 (3.9-18.4)	0.90	16.90	3.7 (3.4-4.1)	0.7 (0.4-0.9)
		Rhinoptera marginata	25	32-82	4.4 (2.8-6.3)	0.70	-19.09	3.5 (3.2-3.7)	0.7 (0.4-0.9)
	Waders	Actitis hypoleucos	10		4.2 (1.9-7.3)	0.97	12.80	3.2 (2.8-3.6)	0.5 (0.1-0.8)
		Arenaria interpres	10		1.5 (0.8-3.0)	0.96	-28.15	3.8 (3.5-4.2)	0.3 (0.0-0.5)
		Calidris alba	9		2.2 (0.9-3.9)	0.94	-14.16	3.4 (3.1-3.6)	0.9 (0.5-1.0)
		Calidris canutus	10		1.4 (0.7-2.3)	0.94	-4.50	3.0 (2.7-3.4)	0.3 (0.1-0.6)
		Calidris ferruginea	10		4.1 (1.8-7.0)	0.85	-65.20	3.4 (3.1-3.8)	0.9 (0.4-1.0)
		Charadrius hiaticula	10		1.8 (0.8-3.0)	0.63	33.85	3.4 (3.2-3.6)	0.8 (0.4-0.9)
		Limosa lapponica	6		4.5 (1.5-9.2)	0.90	-31.53	3.4 (3.0-3.8)	0.7 (0.2-1.0)
		Numenius phaeopus	6		22.4 (7.4-47.4)	0.94	24.84	2.3 (2.0-2.9)	0.4 (0.0-0.9)
		Pluvialis squatarola	10		1.6 (0.9-3.6)	0.97	-49.14	3.3 (3.0-3.6)	0.9 (0.5-1.0)
		Tringa nebularia	8		4.1 (1.5-7.3)	0.89	6.88	3.8 (3.4-4.2)	0.3 (0.0-0.6)
		Tringa totanus	10		3.6 (1.6-6.1)	0.91	18.17	3.3 (3.0-3.7)	0.7 (0.2-0.9)

Appendix 8.5 - Mixing model details

Gelman-Rubin diagnostics for convergence for all mesopredator mixing models. We ran each model with chain lengths of 100,000, 300,000, 1,000,000, and 3,000,000 iterations and determined the proportion of variables with a Gelman-Rubin (GR) diagnostic of >1.1 (Phillips *et al.* 2014). A value of 0.00 means total convergence of the mixing model as all variables are GR <1.1. We used the model with a chain length of 3,000,000 iterations as all species models converged for both areas. Gray cells indicate the prey species of which species groups were included in the model for each mesopredator.

		м	arkov Cl (x100	nain leng 1.000)	h	ychaetes	alves	stropods	ustaceans	mersal teleosts	ithopelagic teleosts	phalopods	ngrays	nthopelagic rays	itarfish	urks
Area	Species	1	3	10	30	Pol	Biv	Ga	S	Dei	Ber	c	Sti	Beı	ß	Sh_2
Banc d'Arguin	Aetomylaeus boyinus	2.08	4.17	0.00	0.00											
B	Calidris canutus	6.93	1.98	0.00	0.00											
	Charadrius hiaticula	0.00	0.00	0.00	0.00											
	Dasvatis marmorata	0.00	0.00	0.00	0.00											
	Fontitrygon margarita	6 38	2 13	0.00	0.00											
	Fontitrygon margaritella	0.00	0.00	0.00	0.00											
	Ginglymostoma cirratum	2.22	2.22	0.00	0.00											
	Glaucostegus cemiculus	5.48	1.37	0.00	0.00											
	Gymnura altavela	4.17	0.00	0.00	0.00							- 1				
	Haematopus ostralegus	0.00	0.00	0.00	0.00							- 1				
	Leptocharias smithii	24.69	18.52	2.47	0.00											
	Limosa lapponica	0.00	0.00	0.00	0.00											
	Numenius phaeopus	7.50	2.50	0.00	0.00											
	Paragaleus pectoralis	14.49	2.90	1.45	0.00											
	Pluvialis squatarola	0.00	0.00	0.00	0.00											
	Rhinobatos irvinei	4.88	0.00	0.00	0.00											
	Rhinobatos rhinobatos	0.00	0.00	0.00	0.00							- 1				
	Rhinoptera marginata	10.00	5.00	2.50	0.00							_				
	Rhizoprionodon acutus	12.68	4.23	1.41	0.00											
	Sphyrna lewini	20.00	14.55	0.00	0.00			- 1								
	Sphyrna zygaena	30.00	31.43	7.14	0.00			_								
Bijagos	Actitis hypoleucos	0.00	0.00	0.00	0.00											
Archipelago	Arenaria interpres	9.38	3.12	0.00	0.00											
	Calidris alba	0.00	0.00	0.00	0.00											
	Calidris canutus	0.00	6.25	0.00	0.00											
	Calidris ferruginea	0.00	0.00	0.00	0.00											
	Carcharhinus leucas	2.50	2.50	0.00	0.00											
	Carcharhinus limbatus	14.04	3.51	0.00	0.00			_								
	Charadrius hiaticula	0.00	0.00	0.00	0.00											
	Fontitrygon margarita	2.53	2.53	0.00	0.00											
	Fontitrygon margaritella	3.30	2.75	0.00	0.00											
	Fontitrygon ukpam	0.00	0.00	0.00	0.00								_			
	Ginglymostoma cirratum	8.33	2.78	0.00	0.00		_									
	Glaucostegus cemiculus	3.64	1.21	0.00	0.00							- 1				
	Gymnura sereti	0.00	0.00	0.00	0.00											
	Limosa lapponica	0.00	0.00	0.00	0.00											
	Numenius phaeopus	0.00	0.00	0.00	0.00											
	Pluvialis squatarola	0.00	0.00	0.00	0.00											
	Rhinoptera marginata	0.00	0.00	0.00	0.00											
	Rhizoprionodon acutus	19.12	23.53	1.47	0.00			. 1								
	Spnyrna lewini Taingg a shulari a	12.16	5.41	0.00	0.00		_	-								
	Tringa nebularia	0.00	0.00	0.00	0.00											
	iringa totanus	0.00	0.00	0.00	0.00											

Appendix 8.6 - Coverage of predator isotopic space by potential prey

To determine if the food web in each study area was sufficiently sampled for each predator species (i.e., if the sampled prey species covered the TDF-corrected niche space of the predator; Stock *et al.* 2018), we determined the coverage of predator isotopic tracer values by the isotopic space of selected prey. For this, we used 1,000 Monte Carlo iterations of the convex hull between the means of predator isotopic values and determined the coverage of resampled predator isotopic values for each iteration. We then determined if most predator tracer values (>50%) were covered by the isotopic space of prey species as input to the mixing model. This indicated that the means of *Arenaria interpres*, *Fontitrygon ukpam*, *Numenius phaeopus* in the Bijagós Archipelago and *Sphyrna zygaena* in the Banc d'Arguin were below 50%. As their 95% credible intervals were not different from 50% (i.e., included 50% coverage), we still included these species in the mixing model results but indicated their uncertainty with an asterisk (*) in Figure 8.4.

Appendix 8.7 - Trophic Discrimination Factors

For sharks and rays, three primary studies describing different Trophic Discrimination Factors (TDFs) are often cited in studies utilizing stable isotope analysis. Kim *et al.* (2011), Caut *et al.* (2009, and Hussey *et al.* (2010) describe TDFs for ¹³C and ¹⁵N in muscle tissue based on (semi-)controlled feeding studies. The former two studies are based on relatively small shark species, whereas the latter is based on two larger shark species. Hence, the former two are often used in stable isotope analysis studies to study small-bodied sharks, early life stages, and rays (see table). For this reason, we used these TDFs to determine the trophic position (Appendix 8.9) of sharks and rays in this study and also used these TDFs for the isotopic mixing models (Appendix 8.11). We do, however, show the influence of other TDFs and combinations of TDFs on the posterior estimates of trophic position (Supplementary Information 7). For shorebirds, TDFs of a controlled feeding study of red knots (*Calidris canutus*) were available. As this is one of the focal species of this study, we used the TDFs described by Oortwijn *et al.* 2023.

Species	Reference	Δ ¹³ C (SD; ‰)	$\begin{array}{c} \Delta^{15}N\\ (SD; \%)\end{array}$	Used for (example references):	This study (Y/N)
Triakis semifasciata	Kim <i>et al</i> . 2011	1.7 (0.5)	3.7 (0.4)	Sharks (multi-species) ^{1,3} Small/juvenile sharks ^{2,3} Stingrays ^{3,4}	Y
Scyliorhinus canicula	Caut <i>et al.</i> 2009	0.8 (0.1)	2.8 (0.1)	Sharks (multi-species) ¹ Small/juvenile sharks ⁵	Y
Carcharias taurus Negaprion brevirostris	Hussey et al. 2010	0.9 (0.3)	2.3 (0.2)	Sharks (multi-species) ¹ Large-bodied/adult sharks ^{6,7}	N
Calidris canutus	Oortwijn et al. 2023	2.9 (0.1)	3.3 (0.3)	Shorebirds	Y

¹Bird, C. S., et al. (2018). Nature Ecology & Evolution. https://doi.org/10.1038/s41559-017-0432-z

² Carlisle, A. B., et al. (2021). Scientific Reports. https://doi.org/10.1038/s41598-021-89903-z

³ Tilley, A., et al. (2013). PLoS ONE. https://doi.org/10.1371/journal.pone.0079560

⁴ Martins, A. P. B., et al. (2022). Marine and Freshwater Research. https://doi.org/10.1071/mf21292

⁵.Caut, S., et al. (2013). Marine Ecology Progress Series. https://doi.org/10.3354/meps10478

⁶Raoult, V., et al. (2019). Journal of Fish Biology. https://doi.org/10.1111/jfb.14160

⁷ Hussey, N., *et al.* (2012). *Global Perspectives on the Biology and Life History of the White Shark*. https://doi.org/10.1201/b11532-5

Appendix 8.8 - Species group niche space overlap

The posterior distributions for group overlap (Figures 8.2C and 8.3C) are based on mean species-pair niche overlap. Generally, overlap in the core niche (red: 40% of individuals of each species) is highest between shorebirds and rays. However, the overlap of total niche space (blue: 95% of individuals of each species) is higher between sharks and rays in the Banc d'Arguin.

Appendix 8.9 - Trophic position and alpha estimates

The estimates for trophic position (TP) and alpha (α) based on the trophic discrimination factors (TDFs) of Kim et al. (2011) and Caut *et al.* (2009) are provided. We compared the posterior distributions of the trophic position and α based on different (combinations of) TDFs (Appendix 8.7) for each species group and in each study area. For sharks and rays, these are TDFs described by Kim *et al.* (2011), Caut *et al.* (2009), and Hussey *et al.* (2010), and a combination of TDFs described for small-bodied species (Kim et al. 2011 and Caut *et al.* 2009; used in this study) and all TDFs. For shorebirds, TDFs of a controlled feeding study of red knots (*Calidris canutus*) were available. As this is one of the focal species of this study, we used the TDFs described by Oortwijn *et al.* 2023.

The posterior estimates of trophic niches for sharks and rays differed slightly with different TDFs used, with the TDFs based on larger-bodied sharks (described by Hussey *et al.* 2010) resulting in higher trophic position estimates compared to the TDF-combination used in this study (TDFs described by Kim *et al.* 2010 and Caut *et al.* 2009; Appendix 8.7). The posterior alpha (α) estimates differed less across different TDFs, with no influence on the analysis outcomes.

Banc d'Arguin: posterior distribution of trophic position estimates

Banc d'Arguin: posterior distribution of alpha (α) estimates

Bijagós Archipelago: posterior distribution of trophic position estimates

Bijagós Archipelago: posterior distribution of alpha (α) estimates

Appendix 8.10 - Species niche space overlap with species group

The overlap between a species of shorebird, shark and ray and other species groups was calculated to determine which other species groups occupied most of the niche space of the species. Here, we show the posterior distribution (mean and 95% credible intervals; black dot and red bar, respectively) of this overlap for each species in the two study areas. We show the proportion of the total (i.e., 95% of niche space) and core (i.e., 40% of niche space) niche space of that species that overlapped with other species of shorebird, shark or ray.

Banc d'Arguin

		Total (95%)			Core (40%)	
Species	Sharks	Rays	Shorebirds	Sharks	Rays	Shorebirds
Aetomylaeus bovinus	0.6 (0.4-0.8)	1.0 (0.9-1.0)	0.9 (0.6-1.0)	0.0 (0.0-0.2)	1.0 (0.8-1.0)	0.4 (0.0-0.8)
Calidris canutus	0.5 (0.4-0.6)	0.7 (0.6-0.8)	1.0 (0.9-1.0)	0.1 (0.0-0.2)	0.6 (0.5-0.8)	0.7 (0.2-1.0)
Calidris ferruginea	0.3 (0.0-0.4)	0.3 (0.1-0.6)	0.7 (0.3-1.0)	⊷0.1 (0.0-0.3)	0.2 (0.0-0.5)	0.6 (0.0-1.0)
Charadrius hiaticula	0.3 (0.1-0.5)	0.4 (0.2-0.7)	1.0 (0.8-1.0)	0.0 (0.0-0.3)	0.0 (0.0-0.1)	0.9 (0.4-1.0)
Dasyatis marmorata	0.6 (0.5-0.8)	0.9 (0.7-1.0)	0.8 (0.5-1.0)	0.3 (0.0-0.6)	0.9 (0.6-1.0)	0.2 (0.0-0.6)
Dasyatis sp.	0.6 (0.4-0.8)	0.9 (0.7-1.0)	0.9 (0.7-1.0)		0.9 (0.6-1.0)	0.6 (0.4-0.9)
Fontitrygon margarita	0.5 (0.3-0.7)	0.9 (0.8-1.0)	0.9 (0.7-1.0)	0.0 (0.0-0.1)	0.8 (0.5-1.0)	0.5 (0.1-0.9)
Fontitrygon margaritella	0.5 (0.0-1.0)	1.0 (0.7-1.0)	0.8 (0.5-1.0)	0.0 (0.0-0.0)	0.9 (0.5-1.0)	0.3 (0.0-0.9)
Ginglymostoma cirratum	0.6 (0.3-0.9)	0.6 (0.3-0.9)	0.8 (0.5-1.0)	0.4 (0.0-0.9)	0.2 (0.0-0.6)	0.5 (0.1-0.9)
Glaucostegus cemiculus	0.8 (0.6-0.9)	0.9 (0.8-1.0)	0.9 (0.7-1.0)	0.4 (0.1-0.7)	0.8 (0.6-1.0)	0.7 (0.4-1.0)
Gymnura altavela	1.0 (0.9-1.0)	0.9 (0.7-1.0)	0.8 (0.6-1.0)	0.9 (0.7-1.0)	0.4 (0.1-0.8)	0.2 (0.0-0.6)
Haematopus ostralegus	1.0 (0.7-1.0)	1.0 (0.9-1.0)	1.0 (1.0-1.0)	0.4 (0.0-0.9)	0.8 (0.1-1.0)	1.0 (0.7-1.0)
Leptocharias smithii	0.9 (0.8-1.0)	1.0 (0.9-1.0)	0.8 (0.6-1.0)	0.7 (0.3-1.0)	0.9 (0.6-1.0)	0.1 (0.0-0.5)
Limosa lapponica	0.3 (0.2-0.4)	0.4 (0.3-0.5)	0.8 (0.5-0.9)	0.1 (0.0-0.3)	0.3 (0.1-0.4)	0.7 (0.5-0.9)
Numenius phaeopus	0.6 (0.3-1.0)	0.6 (0.5-0.8)	1.0 (1.0-1.0)	0.2 (0.0-0.8)	0.0 (0.0-0.2)	1.0 (1.0-1.0)
Paragaleus pectoralis	0.9 (0.7-1.0)	0.8 (0.7-1.0)	0.8 (0.6-1.0)	0.7 (0.4-0.9)	0.7 (0.4-1.0)	0.3 (0.0-0.7)
Pluvialis squatarola	0.3 (0.1-0.4)	0.3 (0.2-0.5)	0.9 (0.7-1.0)	0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.7 (0.3-1.0)
Rhinobatos irvinei	0.7 (0.5-1.0)	1.0 (1.0-1.0)	1.0 (0.8-1.0)	0.1 (0.0-0.4)	1.0 (0.9-1.0)	0.7 (0.3-1.0)
Rhinobatos rhinobatos	0.8 (0.6-1.0)	0.9 (0.7-1.0)	0.9 (0.6-1.0)	0.5 (0.2-0.8)	0.9 (0.7-1.0)	0.6 (0.1-1.0)
Rhinoptera marginata	0.8 (0.6-1.0)	1.0 (0.9-1.0)	0.7 (0.4-1.0)	0.3 (0.0-0.7)	0.7 (0.3-1.0)	0.0 (0.0-0.4)
Rhizoprionodon acutus	0.9 (0.8-1.0)	0.8 (0.6-1.0)	0.8 (0.5-1.0)	0.8 (0.5-1.0)	0.3 (0.0-0.7)	0.1 (0.0-0.5)
Sphyrna lewini	0.9 (0.7-1.0)	0.6 (0.3-0.9)	0.6 (0.1-1.0)	0.4 (0.0-1.0)	0.0 (0.0-0.1)	0.0 (0.0-0.0)
Sphyrna zygaena	0.9 (0.8-1.0)	1.0 (1.0-1.0)	0.8 (0.4-1.0)	0.7 (0.3-1.0)	0.7 (0.4-1.0)	0.0 (0.0-0.4)

Bijagós Archipelago

		Total (95%)			Core (40%)	
Species	Sharks	Rays	Shorebirds	Sharks	Rays	Shorebirds
Actitis hypoleucos	0.2 (0.0-0.4)	0.9 (0.6-1.0)	0.8 (0.6-1.0)	0.0 (0.0-0.2)	0.8 (0.3-1.0)	0.3 (0.0-0.9)
Arenaria interpres	0.4 (0.2-0.6)	1.0 (0.9-1.0)	0.9 (0.6-1.0)	0.0 (0.0-0.2)	0.2 (0.0-0.9)	0.5 (0.0-1.0)
Calidris alba	0.0 (0.0-0.1)	0.5 (0.1-0.9)	0.9 (0.7-1.0)	0.0 (0.0-0.0)	0.0 (0.0-0.0)	0.7 (0.1-1.0)
Calidris canutus	0.3 (0.1-0.5)	1.0 (1.0-1.0)	0.9 (0.4-1.0)	0.0 (0.0-0.1)	1.0 (0.7-1.0)	0.3 (0.0-1.0)
Calidris ferruginea	0.1 (0.0-0.3)	0.6 (0.4-0.7)	0.8 (0.6-1.0)	0.0 (0.0-0.0)	0.0 (0.0-0.2)	0.7 (0.4-1.0)
Carcharhinus leucas	0.4 (0.2-0.7)	1.0 (0.7-1.0)	0.8 (0.5-1.0)	0.0 (0.0-0.3)	0.9 (0.6-1.0)	0.2 (0.0-0.7)
Carcharhinus limbatus	0.9 (0.8-1.0)	1.0 (0.9-1.0)	⊢ 0.6 (0.1-1.0)	0.8 (0.6-1.0)	0.2 (0.0-0.9)	0.0 (0.0-0.0)
Charadrius hiaticula	0.1 (0.0-0.3)	0.8 (0.6-1.0)	1.0 (0.9-1.0)	0.0 (0.0-0.0)	0.0 (0.0-0.1)	0.9 (0.6-1.0)
Fontitrygon margarita	0.3 (0.2-0.5)	1.0 (0.9-1.0)	0.9 (0.7-1.0)	0.2 (0.0-0.4)	1.0 (0.9-1.0)	0.5 (0.2-0.9)
Fontitrygon margaritella	0.2 (0.2-0.4)	0.9 (0.7-1.0)	0.9 (0.8-1.0)	0.1 (0.0-0.2)	0.7 (0.5-0.9)	0.6 (0.3-0.9)
Fontitrygon ukpam	0.1 (0.0-0.3)	0.4 (0.0-0.9)	0.6 (0.0-1.0)	0.0 (0.0-0.1)	0.1 (0.0-0.6)	
Ginglymostoma cirratum	0.8 (0.4-1.0)	0.9 (0.7-1.0)	0.6 (0.0-1.0)	⊢ 0.6 (0.1-1.0)	0.2 (0.0-0.7)	0.0 (0.0-0.2)
Glaucostegus cemiculus	0.5 (0.4-0.6)	1.0 (0.9-1.0)	0.9 (0.6-1.0)	0.2 (0.1-0.4)	0.9 (0.8-1.0)	0.2 (0.0-0.7)
Gymnura sereti	0.4 (0.3-0.6)	0.9 (0.8-1.0)	0.8 (0.5-1.0)	0.2 (0.1-0.4)	0.9 (0.6-1.0)	0.2 (0.0-0.6)
Hypanus rudis	0.3 (0.2-0.5)	0.8 (0.5-1.0)	0.8 (0.5-1.0)	0.1 (0.0-0.3)	0.7 (0.1-1.0)	0.2 (0.0-0.7)
Limosa lapponica	0.1 (0.0-0.4)	0.8 (0.5-1.0)	0.9 (0.7-1.0)	0.0 (0.0-0.0)	0.2 (0.0-0.8)	0.8 (0.4-1.0)
Numenius phaeopus	0.1 (0.0-0.2)	0.4 (0.1-0.7)	0.2 (0.0-0.4)	0.0 (0.0-0.0)	0.1 (0.0-0.4)	0.0 (0.0-0.3)
Pluvialis squatarola	0.1 (0.0-0.4)	0.7 (0.5-0.9)	1.0 (0.8-1.0)	0.0 (0.0-0.0)	0.0 (0.0-0.3)	0.8 (0.4-1.0)
Rhinoptera marginata	0.3 (0.2-0.4)	1.0 (0.9-1.0)	0.9 (0.6-1.0)	0.0 (0.0-0.1)	0.8 (0.4-1.0)	0.3 (0.0-0.9)
Rhizoprionodon acutus	1.0 (0.8-1.0)	0.9 (0.8-1.0)	0.5 (0.0-1.0)	0.7 (0.4-1.0)	0.2 (0.0-0.9)	0.0 (0.0-0.0)
Sphyrna lewini	0.6 (0.5-0.8)	0.9 (0.7-1.0)	0.6 (0.2-1.0)	0.7 (0.5-0.9)	0.2 (0.0-0.7)	0.0 (0.0-0.1)
Tringa nebularia	0.3 (0.0-0.6)	0.9 (0.6-1.0)	0.8 (0.6-1.0)	0.0 (0.0-0.1)	0.2 (0.0-0.9)	0.3 (0.0-0.8)
Tringa totanus	⊷0.1 (0.0-0.3)	0.8 (0.5-1.0)	0.9 (0.6-1.0)	0.0 (0.0-0.0)	0.2 (0.0-0.7)	0.7 (0.3-1.0)

Appendix 8.11 - Mixing model outcomes

We used the mixing models with Markov chain lengths of 3,000,000 iterations as final models (Appendix 8.5) with the trophic discrimination factors (TDFs) described by Kim *et al.* 2010 and Caut *et al.* 2009 (combined) for sharks and rays, and the TDFs for feathers of shorebirds described by Oortwijn *et al.* 2023. Sources (prey) were grouped *a posteriori* (e.g., Phillips *et al.* 2014) into main prey species groups (Appendix 8.3). For each of the mesopredator species in both study areas, we determined the posterior distribution of the proportion that a source contributes to the diet of that predator. The mean of these posterior distributions was reported in Figures 8.4. The following tables show the mean (black dot) and the 95%, 75% and 50% credible intervals (increasing bar size), respectively. The gray bar represents the scale from 0 to 1 (100% contribution), and the text indicates the mean with a 95% credible interval of the posterior distribution.

Based on these model posterior distributions, we also determined the specialization index (ϵ) for each predator, as described by Newsome *et al.* (2012). The table in this supplementary information shows the mean and 95% credible interval of the posterior distribution of the specialization index for each mesopredator in each study area (these are also included in Figure 8.4).

Banc d'Arguin

Species	Polychaetes	Bivalves	Gastropods	Crustaceans	Demersal teleosts	Benthopelagic teleosts	Cephalopods	Stingrays	Benthopelagic rays	Guitarfish	Sharks
Aetomylaeus bovinus	0.1 (0.0-0.3)	0.5 (0.4-0.7)	0.1 (0.0-0.4)	0.1 (0.0-0.2)	0.2 (0.0-0.3)						
Dasyatis marmorata	0.1 (0.0-0.3)	0.5 (0.3-0.7)	0.0 (0.0-0.1)	0.0 (0.0-0.1)	0.3 (0.2-0.4)						
Fontitrygon margarita	0.1 (0.0-0.4)	0.6 (0.4-0.7)	0.1 (0.0-0.2)	0.1 (0.0-0.2)	0.2 (0.1-0.3)						
Fontitrygon margaritella	0.2 (0.0-0.5)	0.4 (0.1-0.7)	0.1 (0.0-0.3)	0.1 (0.0-0.4)	0.2 (0.0-0.4)						
Ginglymostoma cirratum	0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.2 (0.0-0.4)	0.2 (0.0-0.5)	0.1 (0.0-0.3)	0.2 (0.0-0.5)			
Glaucostegus cemiculus	0.1 (0.0-0.3)	0.3 (0.1-0.4)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.1 (0.0-0.3)			0.4 (0.0-0.6)			
Gymnura altavela	0.1 (0.0-0.2)	0.2 (0.0-0.3)	0.1 (0.0-0.3)	0.0 (0.0-0.1)	0.2 (0.0-0.5)			0.4 (0.0-0.7)			
Leptocharias smithii	0.0 (0.0-0.1)	0.3 (0.1-0.4)	0.0 (0.0-0.2)	0.0 (0.0-0.1)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.2 (0.0-0.5)	0.2 (0.0-0.5)			
Rhinobatos irvinei	0.1 (0.0-0.4)	0.4 (0.2-0.5)	0.1 (0.0-0.2)	0.1 (0.0-0.2)	0.1 (0.0-0.3)			0.2 (0.0-0.4)			
Rhinobatos rhinobatos	0.1 (0.0-0.3)	0.3 (0.0-0.4)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.2 (0.0-0.4)			0.3 (0.0-0.6)			
Rhinoptera marginata	0.0 (0.0-0.2)	0.5 (0.4-0.6)	0.0 (0.0-0.2)	0.0 (0.0-0.1)	0.4 (0.3-0.5)						
Paragaleus pectoralis	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.1 (0.0-0.4)	0.2 (0.0-0.4)	0.2 (0.0-0.5)			
Rhizoprionodon acutus				0.1 (0.0-0.1)	0.1 (0.0-0.2)	0.1 (0.0-0.4)	0.3 (0.1-0.4)	0.2 (0.0-0.5)	0.1 (0.0-0.4)	0.1 (0.0-0.3)	0.1 (0.0-0.3)
Sphyrna lewini				0.0 (0.0-0.1)	0.2 (0.0-0.5)	0.1 (0.0-0.4)	0.3 (0.1-0.5)	0.1 (0.0-0.3)	0.1 (0.0-0.5)	0.1 (0.0-0.2)	0.1 (0.0-0.3)
Sphyrna zygaena				0.0 (0.0-0.1)	0.0 (0.0-0.1)	0.1 (0.0-0.3)	0.7 (0.2-0.9)	0.1 (0.0-0.2)	0.0 (0.0-0.1)	0.0 (0.0-0.1)	0.0 (0.0-0.1)
Calidris canutus	0.1 (0.0-0.3)	0.6 (0.4-0.9)	0.0 (0.0-0.1)	0.0 (0.0-0.1)	0.2 (0.0-0.4)						
Charadrius hiaticula	0.2 (0.0-0.7)	0.3 (0.0-0.6)	0.2 (0.0-0.5)	0.1 (0.0-0.4)	0.1 (0.0-0.3)						
Limosa lapponica	0.2 (0.0-0.6)	0.4 (0.1-0.7)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.2 (0.0-0.5)						
Numenius phaeopus	0.2 (0.0-0.5)	0.3 (0.1-0.5)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.3 (0.1-0.5)						
Phivialis squatarola	0.3 (0.0-0.7)	0.3 (0.0-0.6)	0.2 (0.0-0.4)	0.1 (0.0-0.4)	0.1 (0.0-0.4)						
Haematopus ostralegus	0.1 (0.0-0.5)	0.4 (0.1-0.7)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.3 (0.1-0.5)						

Bijagós Archipelago

Species	Polychaetes	Bivalves	Gastropods	Crustaceans	Demersal teleosts	Benthopelagic teleosts	Cephalopods	Stingrays	Benthopelagic rays	Guitarfish	Sharks
Carcharhinus leucas				0.2 (0.0-0.5)	0.1 (0.0-0.4)	0.1 (0.0-0.3)	0.2 (0.0-0.5)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.1 (0.0-0.2)
Carcharhimus limbatus				0.1 (0.0-0.2)	0.1 (0.0-0.2)	0.2 (0.0-0.5)	0.2 (0.0-0.4)	0.1 (0.0-0.2)	0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.2 (0.0-0.4)
Fontitrygon margarita	0.1 (0.0-0.4)	0.2 (0.0-0.5)	0.1 (0.0-0.5)	0.1 (0.0-0.3)	0.4 (0.2-0.7)						
Fontitrygon margaritella	0.1 (0.0-0.4)	0.2 (0.0-0.4)	0.1 (0.0-0.4)	0.2 (0.0-0.5)	0.4 (0.1-0.6)						
Fontitrygon ukpam	0.2 (0.0-0.5)	0.2 (0.0-0.6)	0.2 (0.0-0.6)	0.3 (0.0-0.7)	0.1 (0.0-0.4)						
Ginglymostoma cirratum			0.1 (0.0-0.2)	0.1 (0.0-0.2)	0.2 (0.0-0.5)	0.4 (0.1-0.7)	0.1 (0.0-0.4)	0.2 (0.0-0.5)			
Glaucostegus cemiculus	0.2 (0.0-0.4)	0.2 (0.0-0.4)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.2 (0.0-0.5)			0.2 (0.0-0.4)			
Gymnura sereti	0.2 (0.0-0.5)	0.2 (0.0-0.4)	0.1 (0.0-0.3)	0.2 (0.0-0.4)	0.3 (0.0-0.5)			0.2 (0.0-0.4)			
Rhinoptera marginata	0.2 (0.0-0.5)	0.4 (0.0-0.7)	0.1 (0.0-0.4)	0.2 (0.0-0.5)	0.1 (0.0-0.4)						
Rhizoprionodon acutus				0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.3 (0.1-0.6)	0.2 (0.0-0.4)	0.1 (0.0-0.3)	0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.1 (0.0-0.3)
Sphyrna lewini				0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.2 (0.0-0.5)	0.2 (0.0-0.4)	0.1 (0.0-0.3)	0.1 (0.0-0.2)	0.1 (0.0-0.2)	0.2 (0.0-0.4)
Actitis hypoleucos	0.2 (0.0-0.6)	0.3 (0.0-0.6)	0.1 (0.0-0.4)	0.2 (0.0-0.6)	0.2 (0.0-0.5)						
Arenaria interpres	0.1 (0.0-0.4)	0.1 (0.0-0.4)	0.1 (0.0-0.3)	0.2 (0.0-0.5)	0.5 (0.1-0.7)						
Calidris alba	0.2 (0.0-0.5)	0.3 (0.0-0.6)	0.2 (0.0-0.5)	0.2 (0.0-0.6)	0.2 (0.0-0.5)						
Calidris canutus	0.1 (0.0-0.4)	0.3 (0.1-0.6)	0.1 (0.0-0.3)	0.4 (0.0-0.7)	0.2 (0.0-0.5)						
Calidris ferruginea	0.2 (0.0-0.5)	0.2 (0.0-0.6)	0.2 (0.0-0.5)	0.2 (0.0-0.5)	0.2 (0.0-0.6)						
Charadrius hiaticula	0.2 (0.0-0.6)	0.2 (0.0-0.5)	0.1 (0.0-0.4)	0.2 (0.0-0.5)	0.2 (0.0-0.5)						
Limosa lapponica	0.2 (0.0-0.6)	0.2 (0.0-0.6)	0.1 (0.0-0.4)	0.2 (0.0-0.5)	0.2 (0.0-0.5)						
Numenius phaeopus	0.1 (0.0-0.4)	0.4 (0.1-0.6)	0.2 (0.0-0.5)	0.2 (0.0-0.6)	0.1 (0.0-0.3)						
Phivialis squatarola	0.2 (0.0-0.4)	0.4 (0.0-0.7)	0.2 (0.0-0.5)	0.2 (0.0-0.5)	0.2 (0.0-0.5)						
Tringa nebularia	0.2 (0.0-0.5)	0.1 (0.0-0.4)	0.1 (0.0-0.3)	0.2 (0.0-0.5)	0.4 (0.1-0.7)						
Tringa totanus	0.2 (0.0-0.6)	0.2 (0.0-0.6)	0.1 (0.0-0.4)	0.2 (0.0-0.6)	0.2 (0.0-0.4)						

Specialization indices (ε)

Species	Bijagós Archipelago	Banc d'Arguin
Actitis hypoleucos	0.4 (0.1-0.6)	
Aetomylaeus bovinus		0.5 (0.3-0.6)
Arenaria interpres	0.5 (0.2-0.7)	
Calidris alba	0.4 (0.2-0.6)	
Calidris canutus	0.4 (0.2-0.7)	0.6 (0.3-0.9)
Calidris ferruginea	0.4 (0.2-0.6)	
Carcharhinus leucas	0.3 (0.2-0.5)	
Carcharhinus limbatus	0.3 (0.2-0.5)	
Charadrius hiaticula	0.3 (0.1-0.6)	0.4 (0.2-0.6)
Dasyatis marmorata		0.5 (0.3-0.6)
Fontitrygon margarita	0.4 (0.2-0.6)	0.5 (0.3-0.7)
Fontitrygon margaritella	0.4 (0.2-0.6)	0.4 (0.2-0.7)
Fontitrygon ukpam	0.4 (0.2-0.7)	
Ginglymostoma cirratum	0.4 (0.2-0.6)	0.3 (0.2-0.5)
Glaucostegus cemiculus	0.3 (0.2-0.5)	0.4 (0.2-0.5)
Gymnura altavela		0.4 (0.2-0.7)
Gymnura sereti	0.3 (0.2-0.5)	
Haematopus ostralegus		0.4 (0.2-0.6)
Leptocharias smithii		0.4 (0.3-0.5)
Limosa lapponica	0.3 (0.1-0.6)	0.4 (0.2-0.7)
Numenius phaeopus	0.4 (0.2-0.6)	0.3 (0.2-0.5)
Paragaleus pectoralis		0.3 (0.2-0.5)
Pluvialis squatarola	0.4 (0.2-0.7)	0.3 (0.1-0.6)
Rhinobatos irvinei		0.4 (0.2-0.5)
Rhinobatos rhinobatos		0.4 (0.2-0.5)
Rhinoptera marginata	0.4 (0.2-0.6)	0.5 (0.4-0.6)
Rhizoprionodon acutus	0.4 (0.2-0.6)	0.3 (0.2-0.5)
Sphyrna lewini	0.3 (0.2-0.5)	0.4 (0.2-0.5)
Sphyrna zygaena		0.7 (0.3-0.9)
Tringa nebularia	0.4 (0.2-0.7)	
Tringa totanus	0.3 (0.1-0.6)	